fluid-Poisson model

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Unified modelling of low-current short-length arcs between copper electrodes

In this work we present for the first time a unified model of a low-current short-length arc between copper electrodes. The model employs one-dimensional fluid description of the plasma in argon and copper vapour at atmospheric pressure and the heat transfer in the electrodes made of copper. The solution of the particle and energy conservation of electrons and heavy particles is coupled with the solution of the Poisson equation, from which the self-consistent electric field is obtained. The operation of the non-refractory cathode is based on thermo-field emission.

Plasma parameters of microarcs towards minuscule discharge gap - Dataset

This dataset contains plasma parameters of microarcs generated between a cooled copper anode and a ceriated tungsten cathode by means of a one-dimensional unified non-equilibrium model for gap lengths between 15 and 200 µm and current densities from 2x10^5 up to 10^6 A/m^2. The data show that the decrease of the gap length down to a few tens of micrometers for a given current density results in a progressive shrinking of the quasineutral bulk in the microplasma and its complete disappearance.

Comparison of six simulation codes for positive streamers in air

The dataset includes all the input and output files for the paper: Comparison of six simulation codes for positive streamers in air (https://doi.org/10.1088/1361-6595/aad768). Three test cases for axisymmetric positive streamers are described in the paper. The codes are of the finite volume or the finite element type, and they use both explicit and implicit time stepping. The computational domain and initial conditions are kept simple, so other codes can be compared relatively easily to the data published here.

Plasma parameters in an Ar-HMDSO DBD at atmospheric pressure for plasma-polymerization experiments

The plasma parameters of a large-area dielectric barrier discharge (DBD) in argon-HMDSO mixtures containing up to about 1600 ppm of the monomer are investigated by means of numerical modelling. A time-dependent,
spatially one-dimensional fluid model is applied, taking into account the spatial variation of the discharge plasma between plane-parallel dielectrics covering the electrodes. The dataset contains values of power dissipated in the DBD as well as the space- and period-averaged density and mean energy of the electrons as a function of HMDSO admixture.

Benchmark data for fluid modelling of low-pressure CCRF discharge plasmas

The dataset contains data from comparative studies of capacitively coupled radio-frequency (CCRF) discharges in helium and argon at pressures between 10 and 80 Pa applying two different fluid modeling approaches as well as two independently developed particle-in-cell Monte Carlo collision (PIC-MCC) codes. The dataset provides a test bed for future studies of simple ccrf discharge configurations in helium and argon at pressures ranging from 10 to 80 Pa.