plasma spraying

Modelling and experimental evidence of the cathode erosion in a plasma spray torch

The lifetime of tungsten cathodes used in plasma spray torches is limited by processes leading to a loss of cathode material. It was reported in the literature that the mechanism of their erosion is the evaporation. A model of the ionization layer of a cathode is developed to study the diffusive transport of evaporated tungsten atoms and tungsten ions produced due to ionization by electron impact in a background argon plasma.

Self-consistent Cathode-Plasma Coupling and Role of the Fluid Flow Approach in Torch Modelling - Dataset

The data set is related to a two-dimensional and stationary magneto-hydrodynamic model of a plasma spray torch operated with argon, which is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier-Stokes equations for a laminar and compressible flow are solved in terms of low- and high-Mach number numerical approaches.