medium pressure

Upscaling from single- to multi-filament dielectric barrier discharges in pulsed operation - Dataset

A study on the scalability of discharge characteristics of a single-filament dielectric barrier discharge (DBD) to a spatially one-dimensional multi-filament arrangement driven by the same high-voltage (HV) pulses was performed for a gas mixture of 0.1 vol% O2 in N2 at 1 bar. Both arrangements feature a 1 mm gap with dielectric-covered electrodes featuring two hemispherical alumina caps for the single-filament and two parallel alumina-tubes for the multi-filament arrangement.

Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data - Dataset

Modelling results obtained using an extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300K at sub-atmospheric and atmospheric pressures are presented. Modelling was performed by means of a time- and space-dependent fluid model for two different dielectric barrier discharge configurations as well as for a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with measurements, as well as with modelling data obtained by use of a previously established 15-species RKM.

Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges - Dataset

Presented data was obtained from the analysis of the impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a singlefilament arrangement in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. Fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy.

Venturi-DBD (VDBD)

The gas pressure is an effective parameter to control plasma-chemical reactions, but its adjustment often requires substantial effort. In the Venturi-DBD (VDBD), the pressure can be set to any value between 100 mbar and 1000 mbar reliably and reproducibly. Using a Venturi pump for vacuum generation ensures that the system is affordable and almost maintenance-free. With air as process gas, the output gas composition can seamlessly be adjusted from a strongly ozone-dominated regime to a nitrogen oxides-only-regime including nitric oxide.