electrical measurements

Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges - Dataset

Presented data was obtained from the analysis of the impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a singlefilament arrangement in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. Fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy.

Self-consistent Cathode-Plasma Coupling and Role of the Fluid Flow Approach in Torch Modelling - Dataset

The data set is related to a two-dimensional and stationary magneto-hydrodynamic model of a plasma spray torch operated with argon, which is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier-Stokes equations for a laminar and compressible flow are solved in terms of low- and high-Mach number numerical approaches.

Unified modelling of low-current short-length arcs between copper electrodes

In this work we present for the first time a unified model of a low-current short-length arc between copper electrodes. The model employs one-dimensional fluid description of the plasma in argon and copper vapour at atmospheric pressure and the heat transfer in the electrodes made of copper. The solution of the particle and energy conservation of electrons and heavy particles is coupled with the solution of the Poisson equation, from which the self-consistent electric field is obtained. The operation of the non-refractory cathode is based on thermo-field emission.