Spatial distribution of HO₂ in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy - dataset

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on-off-resonance measurements, in order to determine the spatial distribution of HO₂ in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O₂. To determine the effective absorption length, the HO₂ absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

Self-consistent Cathode-Plasma Coupling and Role of the Fluid Flow Approach in Torch Modelling - Dataset

The data set is related to a two-dimensional and stationary magneto-hydrodynamic model of a plasma spray torch operated with argon, which is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier-Stokes equations for a laminar and compressible flow are solved in terms of low- and high-Mach number numerical approaches.

The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O₂ : a modelling study - dataset

This work presents the datasets of the results of a self-consistent modelling analysis on microwave plasma generated in Ar-O₂ mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are in uenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1 up to 95 % in mass for values of the input microwave power of 1 and 1.5 kW.

Ar metastable densities (³P₂) in the effluent of a filamentary atmospheric pressure plasma jet with humidified feed gas - dataset

The Ar(³P₂) metastable density in the effluent of the cold atmospheric pressure plasma jet kINPen-sci was investigated as a function of the feed gas humidity, the gas curtain composition, and the distance from the nozzle by means of laser atomic absorption spectroscopy. The data set comprises the axial distributions of the Ar metastables as a function of these parameters.

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Unified modelling of low-current short-length arcs between copper electrodes

In this work we present for the first time a unified model of a low-current short-length arc between copper electrodes. The model employs one-dimensional fluid description of the plasma in argon and copper vapour at atmospheric pressure and the heat transfer in the electrodes made of copper. The solution of the particle and energy conservation of electrons and heavy particles is coupled with the solution of the Poisson equation, from which the self-consistent electric field is obtained. The operation of the non-refractory cathode is based on thermo-field emission.