H2

Verified modeling of a low pressure hydrogen plasma generated by electron cyclotron resonance - dataset

A self-consistent fluid model has been successfully developed and employed to model an electron cyclotron resonance driven hydrogen plasma at low pressure. This model has enabled key insights to be made on the mutual interaction of microwave propagation, power density, plasma generation, and species transport at conditions where the critical plasma density is exceeded. The model has been verified by two experimental methods.

Effect of a spatially fluctuating heating of particles in a plasma spray process - Dataset

The work is concerned with the effect of a spatially fluctuating heating of Al_2O_3 particles with diameters of 5–120 μm during a plasma spray process. A plasma jet is generated in a mixture of Ar (40 NLPM) and H_2 (14 NLPM) and in pure Ar at an electric current of 600 A. The tracing of the injected particles in the plume region of the plasma jets is considered in the framework of a three-dimensional model taking into account a turbulent fluid flow.

Evidence of the Dominant Production Mechanism of Ammonia in a Hydrogen Plasma with Parts Per Million of Nitrogen - Dataset

Absolute ground state atomic hydrogen densities were measured, by utilisation of two-photon absorption laser induced fluorescence (TALIF), in a low pressure electron cyclotron resonance plasma as a function of nitrogen admixtures - 0 to 5000 ppm. At nitrogen admixtures of 1500 ppm and higher the spectral distribution of the fluorescence changes from a single Gaussian to a double Gaussian distribution; this is due to a separate, nascent, contribution arising from the photolysis of an ammonia molecule.