DBD

Exploring the mechanisms leading to diffuse and filamentary modes in dielectric barrier discharges in N2 with N2O admixtures - Dataset

The effects of nitrous oxide (N2O) in nitrogen (N2) on the development and morphology of sine-driven dielectric barrier discharges in a single-filament arrangement were studied. Detailed insight in the characteristics of the discharge and its development were obtained from electrical measurements combined with ICCD and streak camera recordings as well as numerical modelling. A miniaturised atmospheric pressure Townsend discharge (APTD) could be generated for admixtures up to 5vol% N2O in N2 although N2O is an efficient collisional quencher of metastable nitrogen molecules.

Upscaling from single- to multi-filament dielectric barrier discharges in pulsed operation - Dataset

A study on the scalability of discharge characteristics of a single-filament dielectric barrier discharge (DBD) to a spatially one-dimensional multi-filament arrangement driven by the same high-voltage (HV) pulses was performed for a gas mixture of 0.1 vol% O2 in N2 at 1 bar. Both arrangements feature a 1 mm gap with dielectric-covered electrodes featuring two hemispherical alumina caps for the single-filament and two parallel alumina-tubes for the multi-filament arrangement.

Impact of the electrode proximity on the streamer breakdown and development of pulsed dielectric barrier discharges - Dataset

Presented data was obtained from the analysis of the impact of the electrode proximity on the streamer breakdown and development of pulsed-driven dielectric barrier discharges (DBDs) in a singlefilament arrangement in a gas mixture of 0.1 vol% O2 in N2 at 0.6 bar and 1.0 bar. The gap distance was varied from 0.5 mm to 1.5 mm, and the applied voltage was adapted correspondingly to create comparable breakdown conditions in the gap. Fast electrical measurements provided insight into discharge characteristics such as the transferred charge and consumed energy.

Ion Wind DBD

The Ion Wind DBD uses a flat plasma electrode to create a surface dielectric barrier discharge (DBD) in the room air flowing over it. An additional “extraction” electrode is arranged in parallel to form a rectangular ventilation duct. The extraction electrode is charged, so that an additional unipolar electric field through the ventilation duct is created. This drags the ions of one polarity (either positive or negative) generated by the surface DBD in the direction of the extraction electrode.

Venturi-DBD (VDBD)

The gas pressure is an effective parameter to control plasma-chemical reactions, but its adjustment often requires substantial effort. In the Venturi-DBD (VDBD), the pressure can be set to any value between 100 mbar and 1000 mbar reliably and reproducibly. Using a Venturi pump for vacuum generation ensures that the system is affordable and almost maintenance-free. With air as process gas, the output gas composition can seamlessly be adjusted from a strongly ozone-dominated regime to a nitrogen oxides-only-regime including nitric oxide.

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Plasma parameters in an Ar-HMDSO DBD at atmospheric pressure for plasma-polymerization experiments

The plasma parameters of a large-area dielectric barrier discharge (DBD) in argon-HMDSO mixtures containing up to about 1600 ppm of the monomer are investigated by means of numerical modelling. A time-dependent,
spatially one-dimensional fluid model is applied, taking into account the spatial variation of the discharge plasma between plane-parallel dielectrics covering the electrodes. The dataset contains values of power dissipated in the DBD as well as the space- and period-averaged density and mean energy of the electrons as a function of HMDSO admixture.