CO2

Towards plasma-enhanced gasification: investigating free-burning carbon arcs in molecular gas mixtures - dataset

A pre-study of free burning arcs between carbon electrodes for potential use in gasification processes is presented. Free-burning arcs offer the potential to be used without additional gas feed or significant changes to gas flows in established gasification systems as well as with minimal cooling requirements for improved energy efficiency. Direct current (DC) arcs with currents up to 200 A and power levels up to 40 kW have been operated in molecular gas mixtures of H2, CO and CO2.

Study of the anode energy in gas metal arc welding

Recent research of gas metal arc welding (GMAW) has proven that the sheath voltage dominates the total voltage fall in the current circuit and delivers most of the energy, which is finally transferred to the wire and the weld pool. This data set provides the results for droplet temperatures and the energy delivered to the wire anode in comparison with the sheath voltages. These quantities have been studied experimentally for a typical pulsed GMAW process in the one drop per pulse mode for mild steel under Ar with 2.5% CO2 with different peak currents from 350 to 650 A.

A simplified voltage model in GMAW

The relation between the voltage and the arc length in gas metal arc welding (GMAW) is an important characteristic. It depends on a complex distribution of the electric conductivity along the current path and does not depend on the arc length only. Based on electric measurements and the arc length determination from high-speed arc images, a simplified electrical model is introduced for a pulsed GMAW process. It shows the relation of voltage, current, arc length and free wire length and considers also their temporal evolution during the process in particular during the high-current phase.