atmospheric pressure

The spatial density distribution of H2O2 in the effluent of the COST-Jet and the kINPen-sci operated with a humidified helium feed gas - dataset

This work serves to highlight the difference of the distinct spatial distribution of H2O2 (hydrogen peroxide) in the effluent of the kINPen-sci plasma jet and the COST reference microplasma jet (COST Jet) operated with humidified helium. For this purpose, the density of H2O2 has been measured spatially resolved using cavity-enhanced absorption spectroscopy employing continuous wave cavity ring-down spectroscopy (cw-CRDS) with a tunable mid-infrared laser.

The localised density of H₂O₂ in the effluent of a cold atmospheric pressure plasma jet determined by continuous-wave cavity ring-down spectroscopy

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on/off-resonance measurements, in order to determine the spatial distribution of H2O2 in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O2. To determine the effective absorption length, the H2O2 absorption was measured in radial direction. These radial fits had a Gaussian-like shape.


In the Oxidant reactor, a DBD generates a plasma using air as the carrier gas. Before treatment, the carrier gas and the sample liquid are mixed and then nebulized. The resulting reaction products include ozone, which can be used for the treatment of raw water. Hereby, a treatment of river water is possible, which can subsequently be used as a coolant in the industry. A treatment of cyanotoxins has already been successfully carried out.

Formation mechanisms of striations in a filamentary dielectric barrier discharge in atmospheric pressure argon - dataset

The results of the modelling of a filamentary dielectric barrier discharge (DBD) in argon at atmospheric pressure obtained using a time-dependent and spatially two-dimensional fluid-Poisson model in axisymmetric geometry are provided in this dataset. The model was employed to investigate the formation mechanisms of the striations along the discharge channel in a one-sided DBD arrangement with a 1.5 mm gap powered by a sinusoidal high voltage applied at the metal electrode.

Introduction and verification of FEDM, an open-source FEniCS-based discharge modelling code - dataset

The dataset contains the data presented in the paper introducing the FEDM (Finite Element Discharge Modelling) code. The FEDM code was developed using the open-source computing platform FEniCS ( Building on FEniCS, the FEDM code utilises the finite element method to solve partial differential equations. It extends FEniCS with features that allow the automated implementation and numerical solution of fully-coupled fluid-Poisson models, including an arbitrary number of particle balance equations.

Exploring the mechanisms leading to diffuse and filamentary modes in dielectric barrier discharges in N2 with N2O admixtures - Dataset

The effects of nitrous oxide (N2O) in nitrogen (N2) on the development and morphology of sine-driven dielectric barrier discharges in a single-filament arrangement were studied. Detailed insight in the characteristics of the discharge and its development were obtained from electrical measurements combined with ICCD and streak camera recordings as well as numerical modelling. A miniaturised atmospheric pressure Townsend discharge (APTD) could be generated for admixtures up to 5vol% N2O in N2 although N2O is an efficient collisional quencher of metastable nitrogen molecules.

Upscaling from single- to multi-filament dielectric barrier discharges in pulsed operation - Dataset

A study on the scalability of discharge characteristics of a single-filament dielectric barrier discharge (DBD) to a spatially one-dimensional multi-filament arrangement driven by the same high-voltage (HV) pulses was performed for a gas mixture of 0.1 vol% O2 in N2 at 1 bar. Both arrangements feature a 1 mm gap with dielectric-covered electrodes featuring two hemispherical alumina caps for the single-filament and two parallel alumina-tubes for the multi-filament arrangement.

Modelling and experimental evidence of the cathode erosion in a plasma spray torch

The lifetime of tungsten cathodes used in plasma spray torches is limited by processes leading to a loss of cathode material. It was reported in the literature that the mechanism of their erosion is the evaporation. A model of the ionization layer of a cathode is developed to study the diffusive transport of evaporated tungsten atoms and tungsten ions produced due to ionization by electron impact in a background argon plasma.

Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data - Dataset

Modelling results obtained using an extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300K at sub-atmospheric and atmospheric pressures are presented. Modelling was performed by means of a time- and space-dependent fluid model for two different dielectric barrier discharge configurations as well as for a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with measurements, as well as with modelling data obtained by use of a previously established 15-species RKM.