atmospheric pressure

Cold plasma for implement for plasma treatment of surfaces

A plasma tool for generating a cold plasma beam (10) is described. The plasma tool is defined by the fact that it has a plasma nozzle, in particular a plasma nozzle which is dimensioned for operation by hand, wherein at least the coil (6) of the adaptation network is integrated into the plasma nozzle, for operation with a high frequency generator in addition to the capacitor C2, while the capacitor C1 can be arranged in the generator itself or in its vicinity.

Influence of surface parameters on dielectric-barrier discharges in argon at subatmospheric pressure - dataset

The provided data describe the discharge current in DBD obtained by fluid modelling using different values of for the secondary electron emission coefficient γ and and the relative permittivity of the dielectric barrier εr in comparison with the measured current at a pressure of 100 mbar and an applied voltage amplitude of 1.8 kV. Furthermore, the dissipated power obtained by model calculations for different values of γ and εr together with the measured power in dependence on the pressure is given.

Electrical characteristics of atmospheric-pressure DBD in argon with small admixtures of TMS - measured and calculated data

A time-dependent, spatially one-dimensional fluid-Poisson model has been applied to analyse the impact of small amounts of tetramethylsilane (TMS) on the discharge characteristics of an atmospheric-pressure dielectric barrier discharge (DBD) in argon. Based on an established argon kinetics, it includes a reaction kinetics for TMS, which has been validated by measurements of the ignition voltage at the frequency f = 86.2 kHz for TMS amounts of up to 200 ppm.

Unified modelling of low-current short-length arcs between copper electrodes

In this work we present for the first time a unified model of a low-current short-length arc between copper electrodes. The model employs one-dimensional fluid description of the plasma in argon and copper vapour at atmospheric pressure and the heat transfer in the electrodes made of copper. The solution of the particle and energy conservation of electrons and heavy particles is coupled with the solution of the Poisson equation, from which the self-consistent electric field is obtained. The operation of the non-refractory cathode is based on thermo-field emission.

Plasma parameters of microarcs towards minuscule discharge gap - Dataset

This dataset contains plasma parameters of microarcs generated between a cooled copper anode and a ceriated tungsten cathode by means of a one-dimensional unified non-equilibrium model for gap lengths between 15 and 200 µm and current densities from 2x10^5 up to 10^6 A/m^2. The data show that the decrease of the gap length down to a few tens of micrometers for a given current density results in a progressive shrinking of the quasineutral bulk in the microplasma and its complete disappearance.

Study of the anode energy in gas metal arc welding

Recent research of gas metal arc welding (GMAW) has proven that the sheath voltage dominates the total voltage fall in the current circuit and delivers most of the energy, which is finally transferred to the wire and the weld pool. This data set provides the results for droplet temperatures and the energy delivered to the wire anode in comparison with the sheath voltages. These quantities have been studied experimentally for a typical pulsed GMAW process in the one drop per pulse mode for mild steel under Ar with 2.5% CO2 with different peak currents from 350 to 650 A.

A simplified voltage model in GMAW

The relation between the voltage and the arc length in gas metal arc welding (GMAW) is an important characteristic. It depends on a complex distribution of the electric conductivity along the current path and does not depend on the arc length only. Based on electric measurements and the arc length determination from high-speed arc images, a simplified electrical model is introduced for a pulsed GMAW process. It shows the relation of voltage, current, arc length and free wire length and considers also their temporal evolution during the process in particular during the high-current phase.

Comparison of six simulation codes for positive streamers in air

The dataset includes all the input and output files for the paper: Comparison of six simulation codes for positive streamers in air (https://doi.org/10.1088/1361-6595/aad768). Three test cases for axisymmetric positive streamers are described in the paper. The codes are of the finite volume or the finite element type, and they use both explicit and implicit time stepping. The computational domain and initial conditions are kept simple, so other codes can be compared relatively easily to the data published here.