high frequency

Bioimaging data management workflow for plasma medicine - dataset

This dataset documents a complete, FAIR-aligned bioimage data workflow integrating Adamant, eLabFTW, and OMERO for an A375 melanoma cell imaging experiment. It includes stepwise visualizations of metadata collection, experiment documentation, data import, annotation, and image rendering across the three platforms. The dataset provides structured metadata at multiple levels, "screen", "plate", and "well", as well as instrument, captured using Adamant, eLabFTW, and Micro-Meta App. Comprehensive biological metadata for each well is supplied in CSV file.

Safety and efficiency evaluation of an innovative plasma jet array in argon by gas switching technology

Wound healing is an important and still challenging task in modern medicine. In particular, the therapeutic options of treating chronic wounds linked to diseases like diabetes are limited. One promising approach is the application of cold atmospheric plasma (CAP) via medical plasma jets or dielectric barrier discharges to specifically stimulate the healing process of non-healing wounds. However, limitations occur regarding the treatment area in case of plasma jets.

The spatial density distribution of H2O2 in the effluent of the COST-Jet and the kINPen-sci operated with a humidified helium feed gas - dataset

This work serves to highlight the difference of the distinct spatial distribution of H2O2 (hydrogen peroxide) in the effluent of the kINPen-sci plasma jet and the COST reference microplasma jet (COST Jet) operated with humidified helium. For this purpose, the density of H2O2 has been measured spatially resolved using cavity-enhanced absorption spectroscopy employing continuous wave cavity ring-down spectroscopy (cw-CRDS) with a tunable mid-infrared laser.

Validation of THz absorption spectroscopy by a comparison with ps-TALIF measurements of atomic oxygen densities

This data set contains the data shown in the corresponding publication in Applied Physics Letters (https://doi.org/10.1063/5.0160303). This publication presents a benchmark of THz absorption spectroscopy against a more established method. Atomic oxygen densities were measured with THz absorption spectroscopy and compared to those obtained from picosecond (ps) two-photon absorption laser induced fluorescence (TALIF) measurements on the same capacitively coupled radio frequency oxygen discharge.

The localised density of H₂O₂ in the effluent of a cold atmospheric pressure plasma jet determined by continuous-wave cavity ring-down spectroscopy

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on/off-resonance measurements, in order to determine the spatial distribution of H2O2 in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O2. To determine the effective absorption length, the H2O2 absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas - Dataset

This data set contains the data shown in the corresponding publication in Plasma Sources Science and Technology (https://doi.org/10.1088/1361-6595/acb815). This publication presents the first implementation of terahertz (THz) quantum cascade lasers (QCLs) for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz.

Extended reaction kinetics model for non-thermal argon plasmas and its test against experimental data - Dataset

Modelling results obtained using an extended reaction kinetics model (RKM) suitable for the analysis of weakly ionised, non-thermal argon plasmas with gas temperatures around 300K at sub-atmospheric and atmospheric pressures are presented. Modelling was performed by means of a time- and space-dependent fluid model for two different dielectric barrier discharge configurations as well as for a micro-scaled atmospheric-pressure plasma jet setup. The results are also compared with measurements, as well as with modelling data obtained by use of a previously established 15-species RKM.

Spatial distribution of HO₂ in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy - dataset

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on-off-resonance measurements, in order to determine the spatial distribution of HO₂ in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O₂. To determine the effective absorption length, the HO₂ absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

kINPen® MED

The kINPen® MED is a member of the kINPen® family certified as a class IIa medical device. In medical practice, the kINPen® MED is primarily used for treating chronic wounds and pathogen-induced skin diseases. One of the key features allowing the certification as a medical device is the low gas temperature of typically 35...38 °C. A vast number of publications investigating the kINPen® MED is available, the section below presents only selected examples.

The device is commercially available from neoplas med GmbH.