non-thermal

PLexc²

PLexc² is two stage microwave plasma source. The first stage is passive self-igniting under atmospheric pressure conditions in the working gas air. It is powered with 1.3 kW microwave power and delivers charge carriers to the second stage powered with 3.0 kW. Additional gas injection between the stages increases the total flow to 60 to 80 slm.

Discharge modes of self-pulsing discharges in argon at atmospheric pressure - dataset

The results of modelling study of self-pulsing discharges in pure argon at atmospheric pressure in a 1.5 mm gas gap are provided in this dataset. The study investigates the interaction between the electrical circuit and the actual plasma characteristics. A time-dependent, spatially one-dimensional fluid-Poisson model coupled with an equivalent circuit equation is applied to analyse the impact of circuit parameters like resistance and applied negative DC high voltage on basic discharge properties.

MobiPlas

The MobiPlas is an innovative portable plasma device designed for medical applications, developed by the Leibniz Institute for Plasma Science and Technology in Greifswald, Germany. This atmospheric pressure plasma jet (APPJ) utilizes argon as its working gas and features an integrated gas supply system with a refillable steel gas tank, allowing for approximately 10 minutes of continuous operation on a single gas filling.

Replication Data for: Which CAP components are relevant for enhancing dermal microcirculation in intact skin?

This dataset was recorded in order to identify components of cold atmospheric plasma (CAP) that are relevant for affecting dermal microcirculation. It contains time-resolved microcirculation parameters (oxygen saturation (StO2), tissue hemoglobin index, near-infrared perfusion index, tissue water index) assessed on the lateral proximal left arm of 10 healthy volunteers (n=1 per volunteer) by hyperspectral imaging prior and after CAP treatment for 270 s.

Precision spectroscopy of non-thermal molecular plasmas using mid-infrared optical frequency comb Fourier transform spectroscopy

The dataset contains results from application of a mid-infrared frequency comb-based Fourier transform spectrometer to measure high-resolution spectra of plasmas containing hydrogen, nitrogen, and a carbon source in the 2800 – 3400 cm–1 range. The spectrally broadband and high-resolution capabilities of this technique enable quantum-state-resolved spectroscopy of multiple plasma-generated species simultaneously, including CH4, C2H2, C2H6, NH3, and HCN, providing detailed information beyond the limitations of current methods.

Dual-comb spectroscopy of ammonia formation in non-thermal plasmas

Plasma-activated chemical transformations promise the efficient synthesis of salient chemical products. However, the reaction pathways that lead to desirable products are often unknown, and key quantum-state-resolved information regarding the involved molecular species is lacking. Here we use quantum cascade laser dual-comb spectroscopy (QCL-DCS) to probe plasma-activated NH3 generation with rotational and vibrational state resolution, quantifying state-specific number densities via broadband spectral analysis.

The spatial density distribution of H2O2 in the effluent of the COST-Jet and the kINPen-sci operated with a humidified helium feed gas - dataset

This work serves to highlight the difference of the distinct spatial distribution of H2O2 (hydrogen peroxide) in the effluent of the kINPen-sci plasma jet and the COST reference microplasma jet (COST Jet) operated with humidified helium. For this purpose, the density of H2O2 has been measured spatially resolved using cavity-enhanced absorption spectroscopy employing continuous wave cavity ring-down spectroscopy (cw-CRDS) with a tunable mid-infrared laser.

Validation of THz absorption spectroscopy by a comparison with ps-TALIF measurements of atomic oxygen densities

This data set contains the data shown in the corresponding publication in Applied Physics Letters (https://doi.org/10.1063/5.0160303). This publication presents a benchmark of THz absorption spectroscopy against a more established method. Atomic oxygen densities were measured with THz absorption spectroscopy and compared to those obtained from picosecond (ps) two-photon absorption laser induced fluorescence (TALIF) measurements on the same capacitively coupled radio frequency oxygen discharge.

Laser absorption spectroscopy for plasma-assisted thermochemical treatment - dataset

Laser absorption spectroscopy (LAS) was applied to investigate a low pressure DC-pulsed discharge in N2-H2 gas mixtures with addition of CH4 or O2. The discharge was maintained in an industrial-scale, active screen plasma nitrocarburizing (ASPNC) reactor with a steel active screen (AS). Spectroscopic lines of CH4, NH3, HCN, CO and H2O were recorded. The dataset contains the species densities for different gas mixtures.