non-thermal

Spatial distribution of HO₂ in an atmospheric pressure plasma jet investigated by cavity ring-down spectroscopy - dataset

The data set comprises full cavity ring-down spectra and absorption coefficients obtained from on-off-resonance measurements, in order to determine the spatial distribution of HO₂ in the cold atmospheric pressure plasma jet kINPen-sci. Therefore, the plasma jet was operated with 3 slm Ar and 3000 ppm water, and was equipped with a gas curtain of 5 slm O₂. To determine the effective absorption length, the HO₂ absorption was measured in radial direction. These radial fits had a Gaussian-like shape.

System and method for operating a plasma jet configuration

The invention relates to a system (1) for generating and controlling a non-thermal atmospheric pressure plasma, comprising: - a discharge space (10) into which a working gas can be introduced via a first opening (12), wherein a plasma (5) can be generated in the discharge space (10), wherein the discharge space (10) has a second opening (14), so that the plasma (5, 6) can exit from the discharge space (10) through this second opening (14) and - at least one high-voltage electrode (20) for generating an electromagnetic field for generating a plasma (5) in the discharge space (10).

wINPlasLab

The wINPlasLab is used to treat a liquid in a beaker with transient spark discharges. During the treatment, the beaker is placed underneath the electrodes, and by adjusting the liquid level in the beaker, the distance between the electrodes and the water surface can be set. An integrated magnetic stirrer provides permanent mixing of the sample substance, and the utilization of leakage transformers for the high-voltage supply provides an inductive current limitation. The system is intended for the treatment of various liquids with different conductivities.

The effect of oxygen admixture on the properties of microwave generated plasma in Ar-O₂ : a modelling study - dataset

This work presents the datasets of the results of a self-consistent modelling analysis on microwave plasma generated in Ar-O₂ mixtures at a frequency of 2.45 GHz at atmospheric pressure. The study focuses on how the plasma properties are in uenced by the increase of the oxygen fraction in the gas mixture. The oxygen admixture is increased from 1 up to 95 % in mass for values of the input microwave power of 1 and 1.5 kW.

kINPen® MED

The kINPen® MED is a member of the kINPen® family certified as a class IIa medical device. In medical practice, the kINPen® MED is primarily used for treating chronic wounds and pathogen-induced skin diseases. One of the key features allowing the certification as a medical device is the low gas temperature of typically 35...38 °C. A vast number of publications investigating the kINPen® MED is available, the section below presents only selected examples.

The device is commercially available from neoplas med GmbH.

Ion Wind DBD

The Ion Wind DBD uses a flat plasma electrode to create a surface dielectric barrier discharge (DBD) in the room air flowing over it. An additional “extraction” electrode is arranged in parallel to form a rectangular ventilation duct. The extraction electrode is charged, so that an additional unipolar electric field through the ventilation duct is created. This drags the ions of one polarity (either positive or negative) generated by the surface DBD in the direction of the extraction electrode.

Venturi-DBD (VDBD)

The gas pressure is an effective parameter to control plasma-chemical reactions, but its adjustment often requires substantial effort. In the Venturi-DBD (VDBD), the pressure can be set to any value between 100 mbar and 1000 mbar reliably and reproducibly. Using a Venturi pump for vacuum generation ensures that the system is affordable and almost maintenance-free. With air as process gas, the output gas composition can seamlessly be adjusted from a strongly ozone-dominated regime to a nitrogen oxides-only-regime including nitric oxide.

Hairline plasma jet (hairlINePlasma)

The hairline plasma jet (hairlINePlasma) is a cold atmospheric pressure plasma source mainly for biological and medical applications. hairlINePlasma uses the physical effect of negative dc corona discharges and produces a nanosecond self-pulsed microplasma with a very thin plasma filament. The Plasma filament has a diameter of about 30 µm and a length of up to 3 cm. Due to this geometrical features, hairlINePlasma is particularly suitable for the treatment of microscopic cavities and the localized functionalization of conductive surfaces.

kINPen® IND

Plasma as a cross-sectional technology in many industry branches, but also in research laboratories, is an indispensable tool in surface treatment. Plasma technology is used everywhere where quality, productivity, environmental sustainability, precision and flexibility is important. Surfaces are cleaned, activated and decontaminated at atmospheric pressure with the handy kINPen® IND. The device is particularly used for surface treatment of temperature-sensitive materials as, for instance, plastics.